Constitutive modelling of fibre reinforced nonhomogenous hyperelastic materials
نویسندگان
چکیده
منابع مشابه
Constitutive modelling of hyperelastic rubber-like materials
The simulation of rubber-like material behaviour by means of the finite element method has been described in this study. Proper material models were selected for the numerical description of static hyper-elasticity. The combinations of a continuum damage mechanics concept and a pseudo-elastic concept with Gao’s elastic law were used to simulate the ideal Mullins effect. Furthermore, a specific ...
متن کاملFatigue Damage Modelling of Fibre-reinforced Composite Materials: Review
This paper presents a review of the major fatigue models and life time prediction methodologies for fibrereinforced polymer composites, subjected to fatigue loadings. In this review, the fatigue models have been classified in three major categories: fatigue life models, which do not take into account the actual degradation mechanisms but use S-N curves or Goodman-type diagrams and introduce som...
متن کاملOn mechanically induced degradation of fiber - reinforced hyperelastic materials
A finite strain model for the mechanical degradation of composite materials with multiple families of fine reinforcing fibers is developed and studied. At any instant of time the matrix material may or may not be degrading with all, some, or none of the interpenetrating fibers also undergoing degradation. This multi-component description of damage is governed by coupled differential equations w...
متن کاملMachining of Fibre Reinforced Plastic Composite Materials
Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and m...
متن کاملModelling Anisotropic, Hyperelastic Materials in ABAQUS
ABAQUS offers the possibility to model non-linear isotropic materials as well as linear anisotropic materials. However, it is not possible to use these two capabilities at the same time in order to model anisotropic hyperelastic materials. Gurvich proposed to model such materials by means of the linear superposition of two fictitious materials: a linear anisotropic, and a hyperelastic isotropic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC Web of Conferences
سال: 2017
ISSN: 2261-236X
DOI: 10.1051/matecconf/201711700049